Barycentric Lagrange Interpolation
نویسندگان
چکیده
Barycentric interpolation is a variant of Lagrange polynomial interpolation that is fast and stable. It deserves to be known as the standard method of polynomial interpolation.
منابع مشابه
The numerical stability of barycentric Lagrange interpolation
The Lagrange representation of the interpolating polynomial can be rewritten in two more computationally attractive forms: a modified Lagrange form and a barycentric form. We give an error analysis of the evaluation of the interpolating polynomial using these two forms. The modified Lagrange formula is shown to be backward stable. The barycentric formula has a less favourable error analysis, bu...
متن کاملOn polynomial and barycentric interpolations
The present survey collects some recent results on barycentric interpolation showing the similarity to the corresponding Lagrange (or polynomial) theorems. Namely we state that the order of the Lebesgue constant for barycentric interpolation is at least log n; we state a Grünwald–Marcinkiewicz type theorem for the barycentric case; moreover we define a Bernstein type process for the barycentric...
متن کاملBarycentric Lagrange Interpolation As discussed by Jean-Paul Berrut and Lloyd N. Trefethen (2004)
This text discusses barycentric Lagrange interpolation based on the SIAM REVIEW article of Jean-Paul Berrut and Lloyd N. Trefethen [1]. It also offers additional background information, as well as some MATLAB demonstrations. Interpolation Given a set Dn of n + 1 nodes x j with corresponding values f j where j = 0, . . . ,n, we aim to construct the polynomial that satisfies p(x j) = f j j = 0, ....
متن کاملStability of Barycentric Interpolation Formulas
The barycentric interpolation formula defines a stable algorithm for evaluation at points in [−1, 1] of polynomial interpolants through data on Chebyshev grids. Here it is shown that for evaluation at points in the complex plane outside [−1, 1], the algorithm becomes unstable and should be replaced by the alternative modified Lagrange or “first barycentric” formula dating to Jacobi in 1825. Thi...
متن کاملStability of Barycentric Interpolation Formulas for Extrapolation
The barycentric interpolation formula defines a stable algorithm for evaluation at points in [−1, 1] of polynomial interpolants through data on Chebyshev grids. Here it is shown that for evaluation at points in the complex plane outside [−1, 1], the algorithm becomes unstable and should be replaced by the alternative modified Lagrange or “first barycentric” formula dating to Jacobi in 1825. Thi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- SIAM Review
دوره 46 شماره
صفحات -
تاریخ انتشار 2004